

Arts & Science MATH 116 CALCULUS II Final Examination 26th April 2018

Please put a check mark to indicate your LECTURE Section and Instructor:			
02 John Martin 04 Qingde Y	Yang 06 Leslie Walter		
Please write your names and IDs <u>clearly</u> and <u>legibly</u> in <u>ink</u> :			
Family Name:	First Name:		
Student ID:	NSID:		

[5] 1. Use Part 1 of the Fundamental Theorem of Calculus to find g'(3) if $g(x) = \int_{-\pi}^{\pi/4} \theta \arctan \theta \, d\theta$.

[5] 2. $\int \frac{1}{1+e^x} dx$

In Questions #2–#6, evaluate the integrals.

$$[5] \quad 3. \quad \int x^2 \ln x \, dx$$

[5] 4.
$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx$$

[5] 5. $\int \frac{1}{1+\sin x} dx$ (Hint. Multiply the numerator and the denominator by some suitable expression.)

[5] 6.
$$\int \frac{3x^2 + x - 1}{x^3 + x^2} \, dx$$

[5] 7. Use L'Hospital's Rule to find the limit: $\lim_{x\to\infty} \frac{x^2+10}{e^{x^2}}$

8. Use the Trapezoidal Rule with n = 4 subintervals of equal length to approximate the value of the

integral $\int_{-2}^{2} \frac{1}{1+x^2} dx.$

In Questions #9, #10 and #11, we shall consider the region R bounded by the curves $y = \sin x$, $0 \le x \le \frac{\pi}{2}$, y = 1, and x = 0.

[5] 9. Find the area A of the region R. Be sure to draw a labelled diagram.

[6]	10.	Refer to the same region R given on page 10. Use the disk or washer method to find the volume V
	of the solid obtained by rotating the region R about x-axis.	

[6] 11. Refer to the same region R given on page 10. Use the method of cylindrical shells to find the volume V of the solid obtained by rotating the region R about the v-axis.

[6] 12. Find the average value of the function f defined by $f(x) = \frac{x}{\sqrt{x+3}}$ on the interval $1 \le x \le 6$.

13. Explain why the following integral is improper. Is it convergent or divergent? If it is convergent,

 $\int_{1}^{\infty} \frac{1}{1+x^2} dx.$

[6] 14. A thick cable, 60 ft long and weighing 180 lb, hangs from a pulley on a crane. Find the work done if the pulley winds up 20 ft of cable.

[6] 15. Find the length L of the curve $y = \ln(\cos x)$ where $0 \le x \le \frac{\pi}{3}$.

[6] 16. The curve $y = \sqrt{1 + e^x}$, $0 \le x \le 1$, is rotated about the x-axis. Find the area of the resulting

surface.

7] 17. **Newton's Law of Cooling** states that at a given time instant t, an object's *rate of cooling*, $\frac{dT}{dt}$, is proportional to the difference between the object's temperature T and its surrounding temperature T_S provided that this difference is not too large. This law also applies to the rate of warming.

When a cold drink is taken from a refrigerator, its temperature is 5°C. After 30 minutes in a 20°C room, its temperature has increased to 10°C. What is the temperature of the drink after 60 minutes? Assume Newton's Law of Cooling applies.

[6] 18. A curve passes through the point (0, 3) and has the property that the slope of the curve at every point P is four times the y-coordinate of P. What is the equation of the curve?